Home
Class 12
MATHS
If alpha and beta are the roots of the e...

If `alpha and beta` are the roots of the equation `375 x^(2) - 25x - 2 = 0`, then `underset(n rarr oo r = 1)("lim"overset(n)(Sigma))alpha^(r) + underset(n rarr oo r = 1)("lim" overset(n)(Sigma)) beta^(r)` is equal to :

A

`(21)/(346)`

B

`(29)/(358)`

C

`(1)/(21)`

D

`(7)/(116)`

Text Solution

Verified by Experts

The correct Answer is:
C

`(alpha)/(1-alpha)+(beta)/(1-beta)`
`(alpha(1-beta)+beta(1-alpha))/((1-2)(1-beta))=(alpha+beta-2alphabeta)/(1-alpha-beta+alphabeta)=((25)/(375)-(2(-2))/(375))/(1-(25)/(375)-(2)/(375)=(29)/(375)-(2)/(375))=(29)/(375-27)=(1)/(12)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation 375 x^(2) - 25x - 2 = 0 , then lim_(n to oo) Sigma^(n) alpha^(r) + lim_(n to oo) Sigma^(n) beta^(r) is equal to :

If alpha and beta are the roots of the equation 375x^(2)-25x-2=0, then the value of lim_(n rarr oo)(sum_(r=1)^(n)alpha^(r)+sum_(r=1)^(n)beta^(r)) is

If alpha and beta are the roots of the quadratic equation 4x ^(2) + 2x -1=0 then the value of sum _(r =1) ^(oo) (a ^(r ) + beta ^(r )) is :

If k=underset(r=0)overset(n)(sum)(1)/(.^(n)C_(r)) , then underset(r=0)overset(n)(sum)(r)/(.^(n)C_(r)) is equal to