Home
Class 12
MATHS
If |(1+sin^2 theta,sin^2 theta,sin^2 the...

If `|(1+sin^2 theta,sin^2 theta,sin^2 theta),(cos^2 theta,1+cos^2 theta,cos^2 theta),(4sin 4 theta,4sin4theta,1+4sin4theta)|=0,` then ...`sin 4theta` equal to ....

A

`1//2`

B

1

C

`-1//2`

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
C

`|{:(,1+sin^(2)theta,sin^(2)theta,sin^(2)theta),(,cos^(2)theta,1+cos^(2)theta,cos^(2)theta),(,4 sin 4theta,4 sin 4theta,1+4 sin 4 theta):}|=0"`
We get `|{:(,1,0,sin^(2)theta),(,-1,1,cos^(2) theta),(,0,-1,1+4 sin 4theta):}|=0 rArr 2(1+2 sin 4 theta)=0 rArr sin 4theta=(-1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

1+sin^(2)theta,sin^(2)theta,sin^(2)thetacos^(2)theta,1+cos^(2)theta,cos^(2)theta4sin4 theta,4sin4 theta,1+4sin4 theta]|=0

sin^(4)theta+sin^(2)theta cos^(2)theta=

cos theta-cos3 theta+cos5 theta-cos7 theta=4sin theta sin4 theta cos2 theta

sin^2theta+cos^4theta=cos^2theta+sin^4theta

If sin theta + sin ^(2) theta =1, " then" cos^(2) theta + cos^(4) theta

If (sin theta+cos theta)/(sin theta-cos theta)=3 then sin^4 theta-cos^4 theta=

[[2cos theta,1,01,2cos theta,10,1,2cos theta]]=(sin4 theta)/(sin theta)

Prove that: sin theta cos^(3)theta-cos theta sin^(3)theta=(1)/(4)sin4 theta