Home
Class 12
MATHS
In a triangle ABC, if sin A sin B= (ab)/...

In a triangle ABC, if sin A `sin B= (ab)/(c^(2))`, then the triangle is :

A

Equilateral

B

Isosceles

C

Right angled

D

Obtuse angled

Text Solution

Verified by Experts

The correct Answer is:
C

`sin A sin B=(ab)/(c^(2)) rArr sin A sin B =((k sin A)(k sin B))/(k^(2) sin^(2) C)`
`rArr sin^(2) C=1 rArr sin C=1`
`rArr c=pi/2 [therefore sin C ne -1] rArr angleC=90^(@), triangle` is right angled.
Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC , if sin A sin B =(ab)/(c^(2)) , then the triangle is

In triangle ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

In a triangle ABC, if cos A=(sin B)/(2sin C), show that the triangle is isosceles.

In Delta ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

If sin A and sin B of a triangle ABC satisfy c^(2)x^(2)-c(a+b)x+ab=0, then the triangle is

In a triangle ABC, if sin A sin (B-C)= sin c sin (A-B) , then prove that cotA, cotB, CotC are in AP.

If in a !ABC ,a sin A=b sin B, then the triangle, is

In any triangle ABC, if sin A , sin B, sin C are in AP, then the maximum value of tan ""B/2 is