Home
Class 12
MATHS
If veca, vecb, vecc are non-coplanar uni...

If `veca, vecb, vecc` are non-coplanar unit vectors such that `vecaxx(vecbxxvecc)=(vecb+vecc)/(sqrt(2))` then the angle between `veca` and `vecb` is

A

`pi/4`

B

`pi/2`

C

`(3pi)/(4)`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
C

`veca xx (vecb xx vecc) =(overset(-)(b)+overset(-)(c))/(sqrt2) rArr overset(-)(a).overset(-)(c))overset(-)(b)-(overset(-)(a) overset(-)(b))overset(-)(c)=(overset(-)(b)+overset(-)(c))/(sqrt2)`
`rArr [(overset(-)(a).overset(-)(c)-1/sqrt2]overset(-)(b)-[(overset(-)(a).overset(-)(b))+1/sqrt2]overset(-)(c)=0`
`rArr |veca||vecc| cos theta=1/sqrt2, |veca||vecb| cos phi=-1/sqrt2`
`rArr cos theta=1/sqrt2, cos phi=-1/sqrt2 rArr theta=pi/4, phi=(3pi)/(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are non coplanar and unit vectors such that vecaxx(vecbxxvecc)=(vecb+vecc)/sqrt(2) then the angle between vea and vecb is (A) (3pi)/4 (B) pi/4 (C) pi/2 (D) pi

If veca,vecb,vecc are three coplanar unit vector such that vecaxx(vecbxxvecc)=-vecb/2 then the angle betweeen vecb and vecc can be (A) pi/2 (B) pi/6 (C) pi (D) (2pi)/3

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

Let veca,vecb and vecc be three unit vectors such that vecaxx(vecbxxvecc)=sqrt(3)/2(vecb+vecc) . If vecb is not parallel to vecc then the angle between veca and vecb is (A) (5pi)/6 (B) (3pi)/4 (C) pi/2 (D) (2pi)/3

Let veca, vecb and vecc be three unit vectors such that vecaxx(vecbxxvecc)=(sqrt(3))/2(vecb+vecc) . If vecb is not parallel to vecc , then the angle between veca and vecb is

If veca, vecb,vecc are three on-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

let veca, vecb and vecc be three unit vectors such that veca xx (vecb xx vecc) =sqrt(3)/2 (vecb + vecc) . If vecb is not parallel to vecc , then the angle between veca and vecb is:

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

If veca, vecb, vecc are unit vectors such that veca. Vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

If veca, vecb and vecc are three unit vectors such that veca xx (vecb xx vecc) = 1/2 vecb , " then " ( vecb and vecc being non parallel)