Home
Class 12
MATHS
The acute angle between F(1)(x)=int(2)^...

The acute angle between `F_(1)(x)=int_(2)^(x) (2t-5)dt and F_(2)(x)=int_(0)^(x)2t dt," is , if "tantheta=a/b` where a, b are co-prime numbers then b – a is:

Text Solution

Verified by Experts

The correct Answer is:
6

Let `F_(1) (x)=y_(1)= int_(2)^(x) (2t-5) dt and F_(2)(x)=y_(2)=int_(2)^(x) 2tdt`
Now point of intersection means those point at which `y_(1)=y_(2)=y rArr y_(1)=x^(2)-5x+6 and y_(2)=x^(2)`
On solving, we get `x^(2)=x^(2)-5x+6 rArr x=6/5 and y=x^(2)=(36/(25)`
Thus point of intersection is `6/5,(36)/(25))` slope of tangents are `12/5 and (-13)/(5)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(x)tf(t)dt+2, then

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

If f(x)=int_(0)^(x){f(t)}^(-1)dt and int_(0)^(1){f(t)}^(-1)=sqrt(2)

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt, then

If F(x)=int_(1)^(x)(ln t)/(1+t+t^(2))dt then F(x)=-F((1)/(x))

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is