Home
Class 12
MATHS
If (dy)/(dx) + (4)/(cos^2 x) y = (1)/(co...

If (dy)/(dx) + (4)/(cos^2 x) y = (1)/(cos^2 x) , x in ((-pi)/(3) , pi/3) " and " y (pi/6) = 4/3 " then " y (- pi/6) ` equals ,

A

`1/4 + 13/12 e^(8/sqrt3)`

B

`1/4 + 13/12 e^(4/sqrt3)`

C

`4/3`

D

`(-4)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A

IF `= e^(int 4 sec^2 xdx) = e^(4 tan x)`
` y xx e^(4 tan x) = int sec^2 x e^(4 tan x) dx + c`
` y xx e^(4 tan x) = 1/4 e^(4 tan x + c)`
` y xx e^(+4//sqrt3) = 1/4 e^(+ 4 xx 1 // sqrt3) + c`
`4/3 xx e^(+4 // sqrt3) - 1/4 e^(+4 // sqrt3) = c`
` 13/12 xx e^(+4 // sqrt3) = c `
` y = 1/4 + (13/12 xx e^(+ 4 // sqrt3) )/(e^(-4// sqrt3) ) `
` y = 1/4 + 13/12 e^(8//sqrt3) `
Promotional Banner

Similar Questions

Explore conceptually related problems

If (dy)/(dx)+3/(cos^(2)x)y=1/(cos^(2)x),xin((-pi)/3,(pi)/3), and y((pi)/4)=4/3 , then y(-(pi)/4) equals 1/3+e^(k) . The value of k is __________.

If dy/dx+3/cos^2xy=1/cos^2x,x in((-pi)/3,pi/3)and y(pi/4)=4/3," then "y(-pi/4) equals

If cos x (dy)/(dx)-y sin x = 6x, (0 lt x lt (pi)/(2)) and y((pi)/(3))=0 , then y((pi)/(6)) is equal to :-

Let y = y (x) be the solution of the differential equation cos x (dy)/(dx) + 2y sin x = sin 2x , x in (0, pi/2) . If y(pi//3) = 0, " then " y(pi//4) is equal to :

Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).

Let y(x) be the solution of the differential equation (dy)/(dx)+(3y)/(cos^(2)x)=(1)/(cos^(2)x) and y((pi)/(4))=(4)/(3) then vaue of y(-(pi)/(4)) is equal to (a)-(4)/(3)(b)(1)/(3)( c) e^(6)+(1)/(3)(d)3

(dy)/(dx) =e^(2y) cos x, " when " x = pi/6, y = 0

If Y = ((2 - 3 cos x)/("sin" x)) , then (dy)/(dx) at x = (pi)/(4) is

Prove that (i) " tan"^(2) .(pi)/(3) + 2cos^(2) .(pi)/(4)+ 3 sec^(2).(pi)/(6)+ 4 cos^(2).(pi)/(2)=8 (ii) " sin ".(pi)/(6) " cos 0 + sin ".(pi)/(4) " cos " .(pi)(4) + " sin " .(pi)/(3) "cos " .(pi)/(6) =(7)/(4) (iii) " 4sin " (pi)/(6) " sin"^(2) (pi)/(3) + 3 " cos " .(pi)/(3) " tan ".(pi)/(4) = " cosec"^(2).(pi)/(2)=4