Home
Class 12
MATHS
Let vec a = hati + lamda1 hatj + hatk , ...

Let `vec a = hati + lamda_1 hatj + hatk , vec b = 2 hati + ( 1 - lamda_2) hatj + 2 hatk " and" vec c = hati + hatj + (lamda_3 - 2) hatk` be the vectors such that `vecb = 2veca` and ` veca` is perpendicular to `vec c` . Then a possible value of ` (lamda_1 , lamda_2 , lamda_3)` is :

A

`(1/3, 4/3, 2/3)`

B

`(1/2 , 0 , - 1)`

C

`(4, - 3, 1)`

D

`(1/3 , 1/3 , 2/3)`

Text Solution

Verified by Experts

The correct Answer is:
D

`veca = hati + lamda_1 hatj = hatk , vec b = 2 hati + (1 - lamda_2 ) hatj + 2hatk , vec c = hati + hatj + (lamda_3 - 2) hatk `
` vecb = 2 veca , " " 1 - lamda_2 = 2 lamda_1 , " " 2 lamda_1 + lamda_2 = 1`
Also , `veca.vec c = 0 rArr 1 + lamda_1 + lamda_3 - 2 = 0`
`lamda_1 + lamda_3 = 1`
hence a possible value of ` (lamda_1, lamda_2,lamda_3) " is " (1/3, 1/3, 2/3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca = 5 hati- 4 hatj + hatk, vecb =- 4 hati + 3 hatj - 2 hatkand vec c = hati - 2 hatj - 2 hatk, then evaluate vec c. (veca xx vecb)

If veca = hati - hatj + hatk, vecb= 2 hati + hatj -hatk and vec c = lamda hati -hatj+ lamda hatk are coplanar, find the value of lamda.

If veca = 3hati - hatj - 4hatk , vecb = -2hati + 4hatj - 3hatk and vec c = hati + 2hatj - hatk then |3veca - 2vec b + 4vec c | is equal to

If veca =hati + hatj - hatk, vecb = 2hati + 3hatj + hatk and vec c = hati + alpha hatj are coplanar vector , then the value of alpha is :

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2 hati - hatj - hatk and vec(c) = hati +3 hatj - 2hatk find (vec(a) xx vec(b)) xx vec(c)

If vec r = 3 hati + 2 hatj - 5 hatk , vec a= 2 hati - hatj + hatk, vec b = hati + 3 hatj - 2hatk and vec c=2 hati + hatj - 3 hatk " such that " hat r = x vec a +y vec b + z vec c then

Let vec a=hati -2 hatj + 3 hatk, vec b = 3 hati + 3 hatj -hat k and vec c=d hati + hatj + (2d-1) hat k ." If " vec c is parallel to the plane of the vectors veca and vec b, " then " 11 d =

If vec(A) = hati + 3hatj + 2hatk and vec(B) = 3hati + hatj + 2hatk , then find the vector product vec(A) xx vec(B) .

Let veca = hati - 2 hatj + 2hatk and vec b = 2 hati - hatj + hatk be two vectors. If vec c is a vector such that vecb xx vec c = vec b xx vec a and vec c vec a = 1 , then vec c vec b is equal to :

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2hati +hatj - hatk and vec(c) = hati +3hatj - 2hatk then find vec(a) xx (vec(b) xx vec(c)) .