Home
Class 12
MATHS
Let n ge 2 be a natural number and 0 lt ...

Let `n ge 2` be a natural number and `0 lt theta lt (pi)/(2)`, Then, `int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta` is equal to (where C is a constant of integration)

A

`(n)/(1- n^2) (1 - (1)/(cos^(n-1) theta) )^((n-1)/(n)) + C`

B

`(n)/(n^2 - 1) (1 - (1)/(cos^(n-1) theta) )^((n+1)/(n)) + C`

C

`(n)/(1 - n^2) ( 1 - (1)/(cos^(n-1) theta) )^((n-1)/(n)) + C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`I = int ((cos^n theta - cos theta)^(1/n) sin theta d theta)/( cos^(n+1) theta) `
` I = int ((cos^n theta - cos theta )/(cos^n theta) )^(1//n) . ( sin theta)/(cos^n theta) d theta`
`I = int ( 1 - (1)/(cos^(n-1) theta) )^(1//n) . (sin theta)/(cos^n theta) d theta`
let ` t = 1 - (1)/(cos^(n-1) theta)`
` dt = ( -(1-n))/(cos^n theta) xx - sin theta d theta , " " dt = (-(n - 1))/(cos^n theta) (sin theta) d theta`
`(dt)/(1-n) = (sin theta)/(cos^n theta) d theta therefore I = int t^(1//n) (dt)/(1 - n)`
`I = (1)/(1-n) (t^(1/n + 1))/(1/n + 1) + c , " " I = (n)/(1 - n^2) t^((n+1)//n) + c`
` I = (n)/(1 - n^2) (1 - (1)/(cos^(n-1) theta))^((n+1)//n) + c `
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta simplifies to (where, c is the constant of integration)

int_(0)^((pi)/(2))(cos theta-sin theta)/((1+cos theta)(1+sin theta))d theta equals -

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

(cos theta + i sin theta) ^ (n) = cos n theta + i sin n theta

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

The integral I=intsin (2theta)[(1+cos^(2)theta)/(2sin^(2)theta)]d theta simplifies to (where, c is the integration constant)

If 0 lt theta lt (pi)/(4) , then what is sqrt(1-2 sin theta cos theta) equal to ?

If tan theta=(m)/(n) then (m sin theta+n cos theta)/(m sin theta-n cos theta) =