Home
Class 12
MATHS
If un=sin(n theta) sec^n theta,vn=cos(nt...

If `u_n=sin(n theta) sec^n theta,v_n=cos(ntheta)sec^ntheta ` `n in N n!=1` then `(v_n-v_(n-1))/(u_(n-1))+1/n (u_n/v_n)=`

A

0

B

`tan theta`

C

`-tan theta + (tan n theta) / n`

D

`tan theta + (tan n theta)/n`

Text Solution

Verified by Experts

The correct Answer is:
C

We have `U_n/V_n=tan n theta`
And `(V_n-V_(n-1))/U_(n-1) = (cos n theta sec^n theta - cos (n-1) theta sec^(n-1) theta)/(sin (n-1)theta sec^(n-1) theta)`
`=(cos n theta sec theta - cos (n-1)theta)/(sin (n-1) theta)=(cos n theta -cos (n-1) theta cos theta )/(cos theta sin (n-1) theta) " " because {cos n theta = cos {(n-1) theta + theta}}`
`=(cos (n-1) theta cos theta - sin (n-1) sin theta - cos (n-1) theta cos theta)/(cos theta sin (n-1) theta ) =-tan theta`
So that `(V_n -V_(n-1))/U_(n-1)+1/n U_n/V_n=-tan theta + (tan n theta)/n`
Promotional Banner

Similar Questions

Explore conceptually related problems

If u_(n)=sin(n theta)sec^(n)theta,v_(n)=cos(n theta)sec^(n)thetan in Nn!=1 then (v_(n)-v_(n-1))/(u_(n-1))+(1)/(n)((u_(n))/(v_(n)))=

If u_(n)=sin(n theta)sec^(n)theta,v_(n)=cos(n theta)sec^(n)thetan in N,n!=1, then (v_(n)-v_(n-1))/(v_(n-1))+(1)/(n)((u_(n))/(v_(n)))

If cos theta+sec theta=2 then cos^(n)theta+sec^(n)theta=2 .Find n=

If u_(n)=int_(0)^((pi)/(2))theta sin^(n)theta d theta and n>=1, then prove that u_(n)=((n-1)/(n))u_(n-2)+(1)/(n^(2))

If sin theta+cos theta=m and sec theta+cos ec theta=n then n(m+1)(m-1) equals

sin^(2)n theta-sin^(2)(n-1)theta=sin^(2)theta where n is constant and n!=0,1

If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to