Home
Class 12
MATHS
If alpha and beta are the roots of the e...

If `alpha` and `beta` are the roots of the equation `x^2-p(x+1)-q=0` then the value of `(alpha^2+2alpha+1)/(alpha^2+2alpha+q)` + `(beta^2+2beta+1)/(beta^2+2beta+q)` is (A)1 (B) 2 (C) 3 (D) 0

Text Solution

Verified by Experts

The correct Answer is:
A

`alpha+beta=p` and `alphabeta=-(p+q)`
Now, `(alpha + 1) (beta+1) =(alpha +beta)+alphabeta+1=1-q`
The given expression =`((alpha+1)^2)/((alpha+1)^2+(q-1))+((beta+1)^2)/((beta+1)^2+(q-1))`
`=((alpha+1)^2)/((alpha+1)^2 -(alpha +1) (beta+1))+((beta+1)^2)/((beta+1)^2-(alpha +1)(beta+1))`
`=((alpha +1))/((alpha -beta))+((beta+1))/((beta-alpha ))=((alpha -beta))/((alpha -beta))=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation x^(2)-p(x+1)-q=0 then the value of (alpha^(2)+2 alpha+1)/(alpha^(2)+2 alpha+q)+(beta^(2)+2 beta+1)/(beta^(2)+2 beta+q) is (A)1(B)2 (C) 3(D)0

If alpha and beta are the roots of x^(2)-p(x+1)-c=0, then the value of (alpha^(2)+2 alpha+1)/(alpha^(2)+2 alpha+c)+(beta^(2)+2 beta+1)/(beta^(2)+2 beta+c)

If alpha,beta are the roots of the equation x^(2)-p(x+1)-c=0, then (alpha+1)(beta+1)=

If alpha and beta be the roots of the equation x^(2)+3x+1=0 then the value of ((alpha)/(1+beta))^(2)+((beta)/(alpha+1))^(2)

If alpha, beta are the roots of equation 3x^(2)-4x+2=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are the roots of equation 6x^(2)+x-2=0 , find the value of (alpha)/(beta)+(beta)/(alpha) :