Home
Class 12
MATHS
The value of the definite integral int(2...

The value of the definite integral `int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx` is equal to

A

`(pi^(2))/(8)`

B

`(pi^(2))/(4)`

C

`(pi^(2))/(2)`

D

`pi^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{2\pi}^{\frac{5\pi}{2}} \left( \sin^{-1}(\cos x) + \cos^{-1}(\sin x) \right) dx, \] we can start by simplifying the expression inside the integral. ### Step 1: Simplify the expression inside the integral We know that: \[ \sin^{-1}(\cos x) + \cos^{-1}(\sin x) = \frac{\pi}{2}. \] This identity holds true because for any angle \(x\): \[ \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2}. \] Thus, we can rewrite our integral as: \[ I = \int_{2\pi}^{\frac{5\pi}{2}} \frac{\pi}{2} \, dx. \] ### Step 2: Evaluate the integral Now we can evaluate the integral: \[ I = \frac{\pi}{2} \int_{2\pi}^{\frac{5\pi}{2}} dx. \] The integral of \(dx\) from \(2\pi\) to \(\frac{5\pi}{2}\) is simply the length of the interval: \[ \int_{2\pi}^{\frac{5\pi}{2}} dx = \frac{5\pi}{2} - 2\pi = \frac{5\pi}{2} - \frac{4\pi}{2} = \frac{\pi}{2}. \] ### Step 3: Substitute back to find \(I\) Now substitute this result back into our expression for \(I\): \[ I = \frac{\pi}{2} \cdot \frac{\pi}{2} = \frac{\pi^2}{4}. \] Thus, the value of the definite integral is: \[ \boxed{\frac{\pi^2}{4}}. \]

To solve the definite integral \[ I = \int_{2\pi}^{\frac{5\pi}{2}} \left( \sin^{-1}(\cos x) + \cos^{-1}(\sin x) \right) dx, \] we can start by simplifying the expression inside the integral. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(t+2pi)^(t+5pi//2) {sin^(-1)(cosx)+cos^(-1)(cosx)} dx is equal to

The value of the definite integral int_(0)^((pi)/(2))(sin^(-1)(cos x)+cos^(-1)(cos x))dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the definite integral,int_(0)^((pi)/(2))(sin5x)/(sin x)dx is

Given int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=ln2 then the value of the definite integral int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to

The value of the definite integral int_(pi//24)^(5pi//24)(dx)/(1+root(3)(tan2x)) is :

The value of the definite integral int_(0)^((pi)/(2))((1+sin3x)/(1+2sin x))dx equals to

The value of the definite integral int _(0)^(pi//2) ((1+ sin 3x)/(1+2 sin x)) dx equals to:

The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to

int_(-pi//2)^(pi//2)(sinx)/(1+cos^(2)x)e^(-cos^(2)x)dx is equal to