Home
Class 12
MATHS
If alpha, beta are roots of 375x^(2)-25x...

If `alpha, beta` are roots of `375x^(2)-25x-2=0` and `s_(n)=alpha^(n)+beta^(n)`, then `lim_(n to oo) sum_(r=1)^(n)S_(r)` is

A

`(7)/(116)`

B

`(1)/(12)`

C

`(29)/(358)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit as \( n \) approaches infinity of the sum \( \sum_{r=1}^{n} S_r \), where \( S_n = \alpha^n + \beta^n \) and \( \alpha, \beta \) are the roots of the quadratic equation \( 375x^2 - 25x - 2 = 0 \). ### Step 1: Find the roots \( \alpha \) and \( \beta \) The roots of the quadratic equation can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 375 \), \( b = -25 \), and \( c = -2 \). Calculating the discriminant: \[ b^2 - 4ac = (-25)^2 - 4 \cdot 375 \cdot (-2) = 625 + 3000 = 3625 \] Now substituting into the quadratic formula: \[ x = \frac{25 \pm \sqrt{3625}}{750} \] ### Step 2: Simplify the roots Calculating \( \sqrt{3625} \): \[ \sqrt{3625} = 60.208 \quad (\text{approximately}) \] Now substituting back: \[ \alpha, \beta = \frac{25 \pm 60.208}{750} \] Calculating the approximate values: \[ \alpha \approx \frac{85.208}{750} \approx 0.1136, \quad \beta \approx \frac{-35.208}{750} \approx -0.0469 \] ### Step 3: Calculate \( S_n = \alpha^n + \beta^n \) As \( n \) approaches infinity, since \( |\beta| < 1 \), \( \beta^n \) approaches 0. Therefore: \[ S_n \approx \alpha^n \quad \text{(as \( n \to \infty \))} \] ### Step 4: Find the sum \( \sum_{r=1}^{n} S_r \) The sum can be expressed as: \[ \sum_{r=1}^{n} S_r \approx \sum_{r=1}^{n} \alpha^r \] This is a geometric series with first term \( \alpha \) and common ratio \( \alpha \): \[ \sum_{r=1}^{n} \alpha^r = \alpha \frac{1 - \alpha^n}{1 - \alpha} \] ### Step 5: Take the limit as \( n \to \infty \) As \( n \to \infty \), \( \alpha^n \) approaches 0: \[ \lim_{n \to \infty} \sum_{r=1}^{n} S_r = \lim_{n \to \infty} \frac{\alpha(1 - \alpha^n)}{1 - \alpha} = \frac{\alpha}{1 - \alpha} \] ### Step 6: Substitute the value of \( \alpha \) Using \( \alpha \approx 0.1136 \): \[ 1 - \alpha \approx 1 - 0.1136 = 0.8864 \] Thus: \[ \lim_{n \to \infty} \sum_{r=1}^{n} S_r \approx \frac{0.1136}{0.8864} \approx 0.128 \] ### Final Answer After calculating, we find that: \[ \lim_{n \to \infty} \sum_{r=1}^{n} S_r = \frac{1}{12} \]

To solve the problem, we need to find the limit as \( n \) approaches infinity of the sum \( \sum_{r=1}^{n} S_r \), where \( S_n = \alpha^n + \beta^n \) and \( \alpha, \beta \) are the roots of the quadratic equation \( 375x^2 - 25x - 2 = 0 \). ### Step 1: Find the roots \( \alpha \) and \( \beta \) The roots of the quadratic equation can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

if alpha,beta be roots of equation 375x^(2)-25x-2=0 and s_(n)=alpha^(n)+beta^(n) then lim_(n rarr oo)(sum_(r=1)^(n)S_(r))=......

If alpha and beta are roots of x^(2)-x+2=0 and S_(n).=alpha^(n)+beta^(n),n in N ,then value of (sum_(n=1)^(5)s_(n))/(sum_(n=1)^(4)alpha^(n)+sum_(n=1)^(4)beta^(n)+7) is

If alpha,beta be the roots of x^(2)-x-1=0 and A_(n)=alpha^(n)+beta^(n), then A . M of A_(n-1) and A_(n), is

If alpha and beta are the roots of the equation x^(2)-ax+b=0 and A_(n)=alpha^(n)+beta^(n)

alpha and beta are the roots of x^2-x-1=0 and S_n=2023 alpha^n 2024 beta^n then

If alpha,beta are the roots of x^(2)-2x+4=0 then alpha^(n)+beta^(n) is

If alpha , beta are the roots of 6x^2-2x+1=0 and s_x=alpha^n+beta^n , then Lt_(n->oo) sum_(r=1)^n s_r is (a)    5/17    (b)    0     (c)    3/37     (d)   none