Home
Class 12
MATHS
If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",...

If `f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):}`
is continuous at `x=(pi)/(2)`, then the value of `((b)/(a))^(5//3)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = \frac{\pi}{2} \). The function is defined piecewise, and we will evaluate the limits from both sides of \( x = \frac{\pi}{2} \). ### Step 1: Evaluate \( \lim_{x \to \frac{\pi}{2}^-} f(x) \) For \( x < \frac{\pi}{2} \): \[ f(x) = \frac{1 - \sin^3 x}{3 \cos^2 x} \] We need to find the limit as \( x \) approaches \( \frac{\pi}{2} \): \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin^3 x}{3 \cos^2 x} \] Substituting \( x = \frac{\pi}{2} \): \[ \sin\left(\frac{\pi}{2}\right) = 1 \quad \text{and} \quad \cos\left(\frac{\pi}{2}\right) = 0 \] This gives us the indeterminate form \( \frac{0}{0} \). We will apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - The derivative of the numerator \( 1 - \sin^3 x \) is \( -3 \sin^2 x \cos x \). - The derivative of the denominator \( 3 \cos^2 x \) is \( -6 \cos x \sin x \). Now we can apply L'Hôpital's Rule: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{-3 \sin^2 x \cos x}{-6 \cos x \sin x} = \lim_{x \to \frac{\pi}{2}} \frac{3 \sin x}{2} = \frac{3 \cdot 1}{2} = \frac{3}{2} \] ### Step 3: Set \( f\left(\frac{\pi}{2}\right) = a \) Since the function is continuous at \( x = \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) = a \] Thus, we have: \[ a = \frac{3}{2} \] ### Step 4: Evaluate \( \lim_{x \to \frac{\pi}{2}^+} f(x) \) For \( x > \frac{\pi}{2} \): \[ f(x) = \frac{b(1 - \sin x)}{(\pi - 2x)^2} \] We need to find the limit as \( x \) approaches \( \frac{\pi}{2} \): \[ \lim_{x \to \frac{\pi}{2}^+} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{b(1 - \sin x)}{(\pi - 2x)^2} \] Substituting \( x = \frac{\pi}{2} \): \[ 1 - \sin\left(\frac{\pi}{2}\right) = 0 \quad \text{and} \quad \pi - 2\left(\frac{\pi}{2}\right) = 0 \] This again gives us the indeterminate form \( \frac{0}{0} \). We apply L'Hôpital's Rule again. ### Step 5: Apply L'Hôpital's Rule Again Differentiate the numerator and denominator: - The derivative of the numerator \( b(1 - \sin x) \) is \( -b \cos x \). - The derivative of the denominator \( (\pi - 2x)^2 \) is \( -4(\pi - 2x) \). Now we can apply L'Hôpital's Rule: \[ \lim_{x \to \frac{\pi}{2}^+} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{-b \cos x}{-4(\pi - 2x)} = \lim_{x \to \frac{\pi}{2}} \frac{b \cos x}{4(\pi - 2x)} \] Substituting \( x = \frac{\pi}{2} \): \[ \cos\left(\frac{\pi}{2}\right) = 0 \quad \text{and} \quad \pi - 2\left(\frac{\pi}{2}\right) = 0 \] We apply L'Hôpital's Rule again. ### Step 6: Differentiate Again Differentiate again: - The derivative of the numerator \( b \cos x \) is \( -b \sin x \). - The derivative of the denominator \( 4(\pi - 2x) \) is \( -8 \). Now we can apply L'Hôpital's Rule: \[ \lim_{x \to \frac{\pi}{2}} \frac{-b \sin x}{-8} = \lim_{x \to \frac{\pi}{2}} \frac{b \sin x}{8} = \frac{b \cdot 1}{8} = \frac{b}{8} \] ### Step 7: Set Limits Equal for Continuity Setting the limits equal for continuity: \[ \frac{b}{8} = a = \frac{3}{2} \] Thus, \[ b = 8 \cdot \frac{3}{2} = 12 \] ### Step 8: Calculate \( \left(\frac{b}{a}\right)^{\frac{5}{3}} \) Now we can find \( \frac{b}{a} \): \[ \frac{b}{a} = \frac{12}{\frac{3}{2}} = 12 \cdot \frac{2}{3} = 8 \] Finally, we compute: \[ \left(\frac{b}{a}\right)^{\frac{5}{3}} = 8^{\frac{5}{3}} = (2^3)^{\frac{5}{3}} = 2^5 = 32 \] ### Final Answer The value of \( \left(\frac{b}{a}\right)^{\frac{5}{3}} \) is \( \boxed{32} \). ---

To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = \frac{\pi}{2} \). The function is defined piecewise, and we will evaluate the limits from both sides of \( x = \frac{\pi}{2} \). ### Step 1: Evaluate \( \lim_{x \to \frac{\pi}{2}^-} f(x) \) For \( x < \frac{\pi}{2} \): \[ f(x) = \frac{1 - \sin^3 x}{3 \cos^2 x} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = {(ax+1,",",x le (pi)/(2)),(sin x+ b,",",x gt (pi)/(2)):} is continuous at x = (pi)/2 , then

If f(x)={(ax+1",", x le (pi)/(2)),(sinx+b",", x gt (pi)/(2)):} is continuous, then

If f(x)={{:((1-sinx)/(pi-2x),,","xne(pi)/(2)),(lambda,,","x=(pi)/(2)):},"be continuous at "x=(pi)/(2), then value of lambda is

If f(x) = {((1-sinzx)/(pi-2x), ",", x != pi/2),(lambda, ",", x = pi/2):} , be continuous at x = (pi)/2 , then the value of lambda is

f(x)={(sin(cos x)-cos x)/((pi-2x)^(2)),x!=(pi)/(2);k,x=(pi)/(2) is continuous at x=(pi)/(2), then k is equal to 0 (b) (1)/(2)(c)1(d)-1

f(x)={(sin(cos x)-cos x)/((pi-2x)^(3)),quad if x+-(pi)/(2) and k,quad if x=(pi)/(2) is continuous at x=(pi)/(2), then k

If f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)/(4) le x le (pi)/(2)),(a cos 2x-b sinx",", (pi)/(2) lt x le pi):} is continuous at x=(pi)/(4) , then a - b is equal to

Determine a & b so that f is continuous at x = pi/2 whre f(x) = [{:((1-sin^(3)x)/(3 cos^(2)x), if, x lt pi/2),(a, if, x=pi/2),((b(1-sinx))/(pi-2x)^(2), if, x gt pi/2):}