Home
Class 12
MATHS
If tan(x+y)=e^(x+y), then (dy)/(dx)...

If `tan(x+y)=e^(x+y)`, then `(dy)/(dx)`

A

is always equal to -1

B

may or may not be equal to -1

C

`(dy)/(dx)` cannot be obtained

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`tan(x+y)=e^(x+y)`
`rArrsec^(2)(x+y)[1+(dy)/(dx)]=e^(x+y)[1+(dy)/(dx)]`
`therefore(dy)/(dx)=-1` or `1+e^(2(x+y))=e^(x+y)` ( not possible )
`1+t^(2)-t=0rArr(t-1/t)^(2)+3/4=0therefore(dy)/(dx)=-1AAx,y`
Promotional Banner

Similar Questions

Explore conceptually related problems

if y^(x)=e^(y-x) then (dy)/(dx)

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=

If x^(y)=e^(x-y); then (dy)/(dx) is

If y= (tan x )^(sin x ) ,then (dy)/(dx)=

If y = (tan x)^(x) , then (dy)/(dx) =

"If "x^(y)=e^(x-y)" then "(dy)/(dx)=

If tan(x+y)+tan(x-y)=1, find (dy)/(dx)

If y = e^(cot x )tan (xe^(x) ) ,then ( dy)/(dx)=

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=