Home
Class 12
MATHS
If |(z +4)/(2z -1)|=1, where z =x +iy. ...

If` |(z +4)/(2z -1)|=1,` where `z =x +iy.` Then the point (x,y) lies on a:

A

circle with center (4,0)

B

circel with center `(-2,0)`

C

circle with center `(2,0)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

Put `z =x + iy`
`|(x + 4 + iy )/(2(x +iy )-1)|=1`
`|x + 4 +iy |= (2x -1+ 2iy)`
`=(x +4)^(2) + y^(2) = (2x -1)^(2) + (2y)^(2)`
`implies x ^(2) + y^(2) + 16 + 8x = 4x ^(2) + 1-4x +4y^(2)`
`implies 3x ^(2) + 3y ^(2) -12x-15=0" "implies x^(2) +y ^(2) -4x -5=0`
Circle with center `(2,0)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If Re((z-1)/(2z+i))=1, where z=x+iy ,then the point (x,y) lies on a

Let a,b in R and a^(2) + b^(2) ne 0 . Suppose S = { z in C: z = (1)/(a+ ibt),t in R, t ne 0} , where i= sqrt(-1) . If z = x + iy and z in S, then (x,y) lies on

If (pi)/(8)+i beta=cot^(-1)(z) where z=x+iy then the locus of z is

If Re((z-1)/(z+1))=0 where z=x+iy is a complex number,then which one of the following is correct? (a) z=1+i(b)|z|=2 (c) z=1-i

Consider a complex number w=(z-1)/(2z+1) where z=x+iy, where x,y in R . If the complex number w is purely imaginary then locus of z is