Home
Class 12
MATHS
If f (6-x ) =f (x), for all then 1/5 int...

If `f (6-x ) =f (x),` for all then `1/5 int _(2)^(3) x [f (x) + f (x+1)]dx` is equal to :

A

`int _(3) ^(4) f (x+z) dx`

B

`int _(3 )^(4) f (x+1) dx`

C

` int _(1) ^(2) f (x+1) dx`

D

`int _(1) ^(3) f (x) dx`

Text Solution

Verified by Experts

The correct Answer is:
C

`I =1/5 int _(2)^(3) x [ f (x) + f (x+1)]dx" "…(i)`
`I =1/5 int _(2)^(3) ( 5-x) [f (5-x) + f (6-x)]dx` Adding (i) and (ii)
`2I =5/5 int _(2)^(3) [f (x) + f(x+1) ]dx`
`2I = int _(2)^(2) f (x) dx + int _(2) ^(3) f (x+1) dx`
`2I = int _(2)^(3) f (x) dx + int _(2)^(3) f [6-x] dx`
`2I = int _(2) ^(3) f (x) dx + int _(2)^(3) f (x) dx`
`I = int _(2)^(3) f (x) dx implies I= int _(1) ^(2) f (x +1) dx`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(6-x)=f(x), for all x, then 1/5 int_2^3 x[f(x)+f(x+1)]dx is equal to :

If f (x) = cos x then int(2(f(x))^(2)-1)(4(f(x))^(3)-3 f (x)) dx is equal to

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

If int f(x)dx=f(x), then int{f(x)}^(2)dx is equal to

If f(a+b+1-x)=f(x) , for all x where a and b are fixed positive real numbers, the (1)/(a+b) int_(a)^(b) x(f(x)+f(x+1) dx is equal to :

If f(0)=2, f'(x) =f(x), phi (x) = x+f(x) then int_(0)^(1) f(x) phi (x) dx is

Let f(x) = {x} , the fractional part of x then int_(-1)^(1) f(x) dx is equal to

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to: