Home
Class 12
MATHS
If alpha, beta are roots of the equation...

If `alpha, beta` are roots of the equation `(1 + cos theta) tan^(2) x - lambda tan x = 1 - cos theta` where `theta in (0, (pi)/(2))` and `cos^(2) (alpha + beta) = (1)/(51)` then `lambda` is :

A

`5sqrt(2)`

B

`10 sqrt(2)`

C

10

D

5

Text Solution

Verified by Experts

The correct Answer is:
B

`cos^(2) (alpha + beta) = (1)/(51) implies tan^(2) (alpha + beta) = 50`
`implies ((tan alpha + tan beta)/(1 - tan alpha tan beta))^(2) = 50`, `[((lambda)/(1 + cos theta))/((1 - (cos theta - 1)/(cos theta + 1)))]^(2) = 50`
`[(lambda)/(2)]^(2) = 50`, `lambda^(2) - 200`, `lambda = 10 sqrt(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are roots of the equatioin a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha and beta are the roots of the equation (1)/(2)x^(2)-sin2 theta x+cos2 theta=0, then the value of (1)/(alpha)+(1)/(beta) is:

If alpha,beta are the roots of the equation a cos theta+b sin theta=c, then prove that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha,beta are the roots of an equation x^(2)-2x cos theta+1=0 then the equation having alpha^(n) and beta^(n) is

If alpha and beta are the roots of equation (k+1) tan^(2)x-sqrt2lambda, tan=1-k and tan^(2)(alpha+beta)=50 . Find the value of lambda

If alpha and beta are the solution of the equation a cos2 theta+b sin2 theta=c then cos^(2)alpha+cos^(2)beta is equal to

If alpha,beta are the roots of the quadratic equation x^(2)-2(1-sin2 theta)x-2cos^(2)(2 theta)=0, then the minimum value of (alpha^(2)+beta^(2)) is equal to

If alpha,beta are the roots of the quadratic equation x^(2)-2(1-sin2 theta)x-2cos^(2)(2 theta)=0, then the minimum value of (alpha^(2)+beta^(2)) is equal to