Home
Class 12
MATHS
If g(x) = 2x^(2) + 3x - 4 and g (f(x)) =...

If `g(x) = 2x^(2) + 3x - 4` and `g (f(x)) = 8x^(2) + 14 x + 1` then f (2) =

A

3

B

5

C

`-3`

D

`-5`

Text Solution

Verified by Experts

The correct Answer is:
B

`g (f (2)) = 8 (2)^(2) + 14 (2) + 1 = 61`
Now, `g (X) = 2x^(2) + 3x - 4`
`g (f (x)) = 2 f^(2) (x) + 3 f (X) - 4`
`g (f(2)) = 2f^(2) (2) + 3f (2) - 4`
`:. 2f^(2) (2) + 3 f (2) - 4 = 61`
Solving we get, f (2) = 5 or -13//2
Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose f,g, R to R . If g(x) defined by g(x) = x^(2) + x-2 and (g.f)(x) =4x^(2) - 10 x + 4 , then f(x) may be given by

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If g(x)=x^(2)+x+x-1 and g(f(x))=4x^(2)-10x+5 then find f((5)/(4))

If g(x)=x^(2)+x-2 and (1)/(2)g(f(x))=2x^(2)-5x+2, then f(x) is

Let f(x) = x^(2) + 2x +5 and g(x) = x^(3) - 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x) .

If f (x) =(x^(2) -1) " and " g (x) =(2x +3) " then " (g o f) (x) =?

If f (x) = 3x -1, g (x) =x ^(2) + 1 then f [g (x)]=

Let f(x) = 3x^(2) + 6x + 5 and g(x) = x + 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x)