Home
Class 12
MATHS
If angle bisector of overline(a) = 2hat(...

If angle bisector of `overline(a) = 2hat(i) + 3 hat(j) + 4 hat(k)` and `overline(b) = 4hat(i) - 2 hat(j) + 3 hat(k)` is `overline(c ) = alpha hat(i) + 2 hat(j) + beta hat(k)` then

A

`vec(c ).hat(k) + 7 = 0`

B

`vec(c ) .hat(k) - 15 = 0`

C

`vec(c ) .hat(k) + 15 = 0`

D

`vec(c ) .hat(k) - 7 = 0`

Text Solution

Verified by Experts

The correct Answer is:
b

The angle bisector of `overline(a)` and `overline(b)` is `overline(p)`
`overline(p) = lambda (hat(a) + hat(b))`
`= lambda (((2 hat(i) + 3 hat(j) + 4 hat(k)) + (4 hat(i) - 2 hat(j) + 3 hat(k)))/(sqrt(4 + 9 + 16))) = (lambda)/(sqrt(29)) [6 hat(i) + hat(j) + 7 hat(k)]`
`= (lambda)/(2 sqrt(29)) [12 hat(i) + 2 hat(j) + 14 hat(k)]`
then `overline(p) = overline(c ) implies alpha = 12 beta = 14`
Now `overline(c ). hat(k) = 14 = 0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If angle bisector of vec(a) = 2hat(i) + 3hat(j) + 4hat(k) and vec(b) = 4hat(i) - 2hat(j) + 3 hat(k) is vec(c) = alpha hat(i) + 2hat(j) + beta hat(k) then :

If the vectors overline(a)=4hat(i)+13hat(j)-18hat(k), overline(b)=hat(i)-2hat(j)+3hat(k), overline(c)=phat(i)+3hat(j)-4hat(k) are coplanar, then p=

If vectors overline(a)=2hat(i)+3hat(j)+4hat(k), overline(b)=hat(i)+hat(j)+5hat(k) and overline(c) form a left handed system, then overline(c) is

If the vectors overline(a)=hat(i)-2hat(j)+hat(k), overline(b)=phat(i)-5hat(j)+3hat(k), overline(c)=5hat(i)-9hat(j)+4hat(k) are coplanar, then p=

If the vectors overline(a)=hat(i)+hat(j)+hat(k), overline(b)=hat(i)-hat(j)+hat(k), overline(c)=2hat(i)+3hat(j)+mhat(k) are coplanar, then m=

If overline(a)=2hat(i)+3hat(j)-hat(k), overline(b)=4hat(i)+2hat(j)+3hat(k), overline(c)=2hat(i)-5hat(j)+9hat(k) , then overline(a)*(overline(b)timesoverline(c))=

If the vectors overline(a)=hat(i)-2hat(j)+hat(k), overline(b)=2hat(i)-5hat(j)+phat(k), overline(c)=5hat(i)-9hat(j)+4hat(k) are coplanar, then p=

If the vectors overline(a)=4hat(i)+11hat(j)+mhat(k), overline(b)=7hat(i)+2hat(j)+6hat(k), overline(c)=hat(i)+5hat(j)+4hat(k) are coplanar, then m=

If the vectors overline(a)=hat(i)+hat(j)+hat(k), overline(b)=hat(i)-hat(j)+hat(k), overline(c)=2hat(i)+3hat(j)+lambdahat(k) are coplanar, then lambda=

If overline(a)=2hat(i)+3hat(j)-hat(k), overline(b)=5hat(i)-6hat(j)+2hat(k) and overline(c)=hat(i)+hat(j)+hat(k) , then [[overline(a), overline(b), overline(c)]]=