Home
Class 12
MATHS
Let veca= 2hati+hatj -2hatk and vecb=ha...

Let `veca= 2hati+hatj -2hatk and vecb=hati+hatj`. If `vec c` is a vector such that `veca*vec c=|vec c|, |vec c-veca|=2sqrt(2)` and the angle between `vec a xx vec b and vec c` is `30^(@)` then `|(veca xx vec b) xx vec c|` is equal to :

A

`(1)/(2)`

B

`(3)/(2)`

C

3

D

`(3sqrt(3))/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

`|(vec(a) xx vec(b) )xxvec(c) | = |vec(a) xx vec(b)| |vec(c)| sin 30^(@)`
Now , `|vec(a) xx vec(b)| = sqrt(|a|^(2)|vecb|^(2) - (vec(a). vec(b))^(2)) = sqrt((9)(2) - (3)^(2)) = 3`
Also , `|vec(c) - vec(a)| = 2sqrt(2) rArr |vec(c)|^(2) + |a|^(2) - 2|vec(c)| = 8`
`rArr |vec(c)|^(2) - 2|vec(c)|^(2) + 1 = 0 rArr |vec(c) | = 1 (As vec(a) . vec(c) = |vec(c)|.)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a=2i+j-2ka n d vec b=i+jdot If vec c is a vector such that vec adot vec c=| vec c|,| vec c- vec a|=2sqrt(2) between vec axx vec b and vec ci s30^0,t h e n|( vec axx vec b)xx vec c| I equal to 2//3 b. 3//2"" c. 2 d. 3

Let veca = hati - 2 hatj + 2hatk and vec b = 2 hati - hatj + hatk be two vectors. If vec c is a vector such that vecb xx vec c = vec b xx vec a and vec c vec a = 1 , then vec c vec b is equal to :

Let veca=2hati-3hatj and vecb=3hati+2hatj. Is |veca|=|vecb|? Are the vectors vec a and vec b equal?

Angle between the vectors sqrt3(veca xx vec b) " and " vec b - (veca .vecb)veca is

For any three vectors vec a, vec b, vec c, (vec a-vec b) * (vec b-vec c) xx (vec c-vec a) is equal to

Let vec a=hati+2hatj-hatk , vec b=hati-hatj , vec c=hati-hatj-hatk ,and vecrxxveca = vecc xx veca , vecr*vecb=0 . Find vecr*veca

Let veca,vecb and vecc be three vectors such that |veca |=sqrt(3),|vec b|=5 , vec b .vec c = 10 and the angle between vec b and vec c is pi/3, if vec a is perpendicular to the vector vec b xx vec c, then | veca xx (vecbxxvecc)| is equal to __________.

Let veca=hat i-2 hat j+hat k, vecb=hat i-hat j+hat k and vec c is nonzero vector and vecb xx vec c= vec b xx vec a, vec a.vec c=0 . Find vecb.vec c .

vec b,vec c are unit vectors and |vec a|=7vec a xx(vec b xxvec c)+vec b xx(vec c xxvec a)=(1)/(2)vec a then the angle between vec a and vec a is

If (vec a xx vec b)^2 + (veca .vecb)^2 = 676 and |vecb| = 2 , then |veca| is equal to