Home
Class 12
MATHS
Let I(1) = int(0)^(pi/4)x^(2008)(tanx )^...

Let `I_(1) = int_(0)^(pi/4)x^(2008)(tanx )^(2008)dx, I_(2) = int_(0)^(pi/4) x ^(2009)(tan x)^(2009)dx , I_(3) = int_(0)^(pi/4) x^(2010)(tanx)^(2010)dx` then which one of the following inequalities hold good?

A

`I_(2)lt I_(3) lt I_(1)`

B

`I_(1) lt I_(2) lt I_(3)`

C

`I_(3) lt I_(1) lt I_(2)`

D

`I_(3) lt I_(2) lt I_(1)`

Text Solution

Verified by Experts

The correct Answer is:
D

Integrand are `I_(3) lt I_(2) lt I_(1)` in ( 0, `(pi)/(4)`).
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) tan x dx

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).sin x dx , then :

int_(0)^(pi//4)(e^(tanx))/(cos^(2)x)dx=?

int_(0)^(pi//2)(dx)/(1+tanx) is

int_(0)^(pi//4) log (1+tan x) dx =?

If I_(1)=int_(0)^(pi//2) x sin x dx and I_(2) = int_(0)^(pi//2) x cos x dx ,then which one of the following is true ?

Let I=int_(0)^((pi)/(2))((sin x)/(x))dx, then

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to