Home
Class 12
MATHS
The value of lim(xto0)(1)/(x) int(0)^(x)...

The value of `lim_(xto0)(1)/(x) int_(0)^(x)(1+ sin 2t)^(1/t) dt` equals :

A

2

B

1

C

e

D

`e^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D

`lim_(x to 0) lim_(x to 0) ((1 + sin2x)^(1/x))/(1) = e^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_( x to 0) (int_(0)^(x) sin t^(2) dt) / x^(2) is

The value of (lim_(x rarr0)(1)/(x^(6))int_(0)^(x^(2))sin(t^(2))dt) is equal to

The value of lim_(xrarr0)(1)/(x^(3)) int_(0)^(x)(tln(1+t))/(t^(4)+4) dt

If a,b and c are real numbers then the value of lim_(t rarr0)ln((1)/(t)int_(0)^(t)(1+a sin bx)^((c)/(x))dx) equals

The value of lim_(xto1^(+))(int_(1)^(x)|t-1|dt)/(sin(x-1)) is

The value of lim_(x to 0)(1)/(x^(3))(t " In"(1+t))/(t^(4)+4)dt is

The value of lim_(x rarr0)int_(0)^(x)(t ln(1+t))/(t^(4)+4)dt