Home
Class 12
MATHS
Let veca = hati - 2 hatj + 2hatk and ...

Let `veca = hati - 2 hatj + 2hatk` and `vec b = 2 hati - hatj + hatk` be two vectors. If `vec c` is a vector such that `vecb xx vec c = vec b xx vec a` and `vec c vec a = 1` , then `vec c vec b` is equal to :

A

`1`

B

`-1`

C

`2`

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
D

`vecbxxvecc - vecbxxveca=veca," "vecbxx(vecc-veca) =vec0`
`vecb = lamda (vec c - veca )" ...(1)"`
`veca.vecb=lamda (veca.vecc-veca^2 )`
`6=lamda(1-9)rArrlamda=(-6)/8 = (-3)/4`
`vecc = (-4)/3 vecb + veca, " "vecb.vec c = -2`
Promotional Banner

Similar Questions

Explore conceptually related problems

The vectors vec a xx (vec b xxvec c), vec b xx (vec c xxvec a), vec c xx (vec a xxvec b) are

The vectors vec a xx (vec b xxvec c), vec b xx (vec c xxvec a) and vec c xx (vec a xxvec b) are

If vec(A) = hati + 3hatj + 2hatk and vec(B) = 3hati + hatj + 2hatk , then find the vector product vec(A) xx vec(B) .

Let veca= 2hati+hatj -2hatk and vecb=hati+hatj . If vec c is a vector such that veca*vec c=|vec c|, |vec c-veca|=2sqrt(2) and the angle between vec a xx vec b and vec c is 30^(@) then |(veca xx vec b) xx vec c| is equal to :

vec a * {(vec b + vec c) xx (vec a + 2vec b + 3vec c)} = [vec with bvec c]

If vec A=hati +7hatj +hatk and vec B =2 hati+3hatj +4hatk then the component of vec A along vec B is

Let vec a and vec b be two unit vectors such that |vec a+vec b|=sqrt(3) if vec c=vec a+2vec b+3(vec aXvec b) then 2|vec c| is equal to

If two vectors are given as veca = hati - hatj + 2hatk and vecb = hati + 2hatj+hatk , the unit vector perpendicular to both vec a and vec b is

Given : vec A = hati + hatj +hatk and vec B =-hati-hatj-hatk What is the angle between (vec A - vec B) and vec A ?

Let vec a, vec b, vec c be three vectors from vec a xx (vec b xxvec c) = (vec a xxvec b) xxvec c, if