Home
Class 12
MATHS
If I underset(1)overset(2)(int)log(11)(x...

If `I underset(1)overset(2)(int)log_(11)(x^3 - x^2 + 6x -5)` dx, then:

A

`0 lt I lt 1/2`

B

`-1ltIlt1/2`

C

`-1ltIlt0`

D

`0lt Ilt 1`

Text Solution

Verified by Experts

The correct Answer is:
D

`f(x) = log_(11) (x^3 - x^2 + 6x - 5)`
` :." "f(x)` is increasing in (1, 2) therefore `0 lt f (x) lt 1`
` 0 lt I lt 1`
Promotional Banner

Similar Questions

Explore conceptually related problems

underset(1)overset(e)int (e^(x))/(x) (1 + x log x)dx

underset1overset2int 3x^2dx =???

int_(2)^(3)log(x-1)/(x-1)dx

I=int(log(x^2))/(x)dx

Solve: log_(3)(2x^(2)+6x-5)>1

int ( x +2)/( 2x ^(2) + 6x + 5) dx = p int ( 4x +6)/( 2x ^(2) + 6x +5) dx + (1)/(2) int (1)/( 2x ^(2) + 6x + 5) dx then p

" If " Delta (x)=|underset(9" "x" "-7)underset(6" "4x" "3)(1" "x^(2)" "x^(2))| then find the value of overset(1)underset(0)(int)Delta (x) dx without expanding Delta (x) .

(i) int (log x)/(x(1+log x)(2+log x)) dx

int_(1)^(2) (log_(e) x)/(x^(2)) dx