Home
Class 12
MATHS
Let alpha=(-1+isqrt3)/2. If a =(1 +alpha...

Let `alpha=(-1+isqrt3)/2`. If `a =(1 +alpha^2)underset(k-0)overset(100)(Sigma)alpha^k` and `b = underset(k-0)overset(10)(Sigma)alpha^(6k)`, , then a and b are the roots of the quadratic equation :

A

`x^2 - 102x + 11 =0`

B

`x^2 + 12x + 11 =0`

C

`x^2 - 12 x - 11 =0`

D

`x^2 - 12 x+ 11=0`

Text Solution

Verified by Experts

The correct Answer is:
D

`alpha = omega ," "a = (1+omega^2) (1 + omega + omega^2 +...+ omega ^(100))`
`a = (1+omega^2)((1-(omega)^(100)))/(1-omega)=1`
` b=1 +omega^6 +omega^(12)+...+omega ^(60)=11," "x^2 -12 + 11=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cot[underset(n=1)overset(100)Sigmacot^(-1)(1+underset(k=1)overset(n)Sigma2k)] is

If underset(i=1)overset(n)sum cos^(-1) alpha_(i)=0," then "underset(i=1)overset(n)sum alpha_(i)=

Let alpha=(-1+isqrt(3))/2 and a=(1+alpha)sum_(k=0)^(100) alpha^(2k),b=sum_(k=0)^(100) alpha^(3k) . If a and b are roots of quadratic equation then quadratic equation is

If underset(k=0)overset(n)(sum)(k^(2)+k+1)k! =(2007).2007! , then value of n is

If underset(r=1)overset(10)sum r! (r^(3)+6r^(2)+2r+5)=alpha (11!) , then the value of alpha is equal to .......

If alpha and beta are the roots of x^(2)+bx+c=0 and alpha+k and beta+k are the roots of x^(2)+qx+r=0 then k=