Home
Class 12
PHYSICS
If (i) A = 1, B = 0, C = 1, (ii) A = B =...

If (i) `A = 1, B = 0, C = 1, (ii) A = B = C = 1, (iii) A = B = C = 0 and (iv) A = 1 = B, C = 0` then which one of the following options will satisfy the expression, `X=bar(A.B.C)+bar(B.C.A)+bar(C.A.B)`

A

(1, 0, 1, 1)

B

(1, 0, 1, 0)

C

(0, 1, 1, 1)

D

`(1, 1, 1, 0)

Text Solution

Verified by Experts

The correct Answer is:
A

Given, `X=bar(A.B.C)+bar(B.C.A)+bar(C.A.B)`
For (i) `A.B.C=B.C.A=C.A.B=0`
And `bar(A.B.C)=bar(B.C.A)=bar(C.A.B)=1`
`"So "X=1+1+1=1`
For (ii) A.B.C = B.C.A = C.A.B = 1
`bar(A.B.C)=bar(B.C.A)=bar(C.A.B)=1`
`"So "X=0+0+=0`
For (iii) `A.B.C=B.C.A=C.A.B=0`
`bar(A.B.C)=bar(B.C.A)=bar(C.A.B)=1" "therefore" "x=bar(A.B.C)+bar(B.C.A)+bar(C.A.B)=1+1+1=1`
For (iv) `A.B.C=B.C.A=C.A.B=0`
`bar(A.B.C)=bar(B.C.A)=bar(C.A.B)=1" "therefore" "x=1+1+1=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let X = A . bar (BC) . Evaluate X for (a) A = 1 , B = 0 , C = 1 , (b) A = B = C = 1 and ( c) A = B = C = 0.

Establish the Boolean identity A.B+A.B.C+bar.B+A.bar.C=B+A.C

Let X=A bar(BC)+B bar(CA)+C bar(AB) .Evalute X for (a) A=1,B=0,C=1 (b) A=B=C=1 A=B=C=0

If bar(c)=3bar(a)+4bar(b) and 2bar(C)=bar(a)-3bar(b) then which of the following are incorrect (A) bar(c) and bar(a) have same direction (B) bar(c) and bar(b) have same direction (C) |bar(c)|>|bar(a)| (D) |bar(b)|>|bar(c)|

Let bar(a)=hat j-hat k and bar(c)=hat i-hat j-hat k then the vector bar(b) satisfying bar(a)timesbar(b)+bar(c)=0 and bar(a).bar(b)=3 is

If the points A(bar(a)),B(bar(b)),C(bar(c)) satisfy the relation 3bar(a)-8bar(b)+5bar(c)=bar(0) then the points are

If bar(c)=3bar(a)-2bar(b) , then prove that [bar(a)bar(b)bar(c)]=0 .

If bar(a),bar(b) and bar(c) are non-coplanar unit vectors such that bar(a)times(bar(b)timesbar(c))=(1)/(sqrt(2))(bar(b)+bar(c)) ],then which of the following statements are correct A. (bar(a),bar(c))=(3 pi)/(4) B. (bar(a),bar(b))=(3 pi)/(4) C. (bar(a),bar(b)+bar(c))=(pi)/(2) D.(bar(b),bar(c))=0

If bar(a) and bar(b) are two unit vectors perpendicular to each other and bar(c)=lambda_1 bar(a)+lambda_2bar(b)+lambda_(3)(bar(a)timesbar(b)) ,then which of the following is (are) true? (A) lambda_(1)=bar(a).bar(c) (B) lambda_(2)=|bar(b)timesbar(a)| (C) lambda_(3)=|(bar(a)timesbar(b))timesbar(c)| (D) lambda_(1)+lambda_(2)+lambda_(3)=(bar(a)+bar(b)+bar(a)timesbar(b)).bar(c)