Home
Class 12
MATHS
If zinC lies on the circle whose equat...

If `zinC` lies on the circle whose equation is `|z-3i|=3sqrt2.` then the argument of `((z-3)/(z+3))` can be

A

`tan^(-1)3`

B

`(pi)/(2)`

C

`(pi)/(4)`

D

`tan^(-1)3sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
C

Here points `(-3) and (c)` lie on the circle
`lZ-3il=3sqrt2`
`rArr" "AB=3sqrt2`
`" "AC=3sqrt2`

`BC=6`
Also, `AB^(2)+AC^(2)=BC^(2)`
`therefore" "angleBAC=(pi)/(2)" "therefore" Arg"((z-3)/(z+3))=(pi)/(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If z lies on the circle I z 1=1, then 2/z lies on

If z ,lies on the circle |z-2i|=2sqrt(2), then the value of arg((z-2)/(z+2)) is the equal to

The system of equations |z+1-i|=sqrt(2) and |z|=3 has

If z lies on the curve |z-3-4i|=3, then least value of |z| is

If |(z+i)/(z-i)|=sqrt(3) , then z lies on a circle whose radius, is

If |z+2i|<=2, then the greatest value of |z-sqrt(3)+i|

If |z+2i|<=2, then the greatest value of |z-sqrt(3)+i|

Principal argument of z=-1-i sqrt(3)