Home
Class 12
MATHS
If f(x)=2sin^(-1)sqrt(1-x)+sin^(-1)(2sqr...

If `f(x)=2sin^(-1)sqrt(1-x)+sin^(-1)(2sqrt(x(1-x)))` where `x in (0, (1)/(2))` then `f'(x)` has the value equal to

A

`(2)/(sqrt(x(1-x)))`

B

Zero

C

`-(2)/(sqrt(x(1-x)))`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)` simplifies to `pi`
`rArr" "f'(x)=0`
or `" "`directly differentiale `f(x)` to get zone
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x))) where x in (0, 1/2) , then f'(x) has the value equal to (i) 2/(xsqrt(1-x)) (ii) 0 (iii) -2/(xsqrt(1-x)) (iv) pi

If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to

If f(x)=(a+sqrt(a^2-x^2)+x)/(sqrt(a^2-x^2)+a-x) where a>0 and x

If f(x)=sin^(-1)((sqrt(3))/(2)x-(1)/(2)sqrt(1-x^(2))),-(1)/(2)<=x<=1, then f(x) is equal to

Let f(x)=sin^(-1){xsqrt(1-x)-sqrt(x(1-x^(2))}}, AA 0le xle1 then f(x) is

f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to

If f(x)=(sin^(-1)x)/(sqrt(1-x^(2))),then(1-x^(2))f'(x)-xf(x)=

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?