Home
Class 12
MATHS
If t(r)=(1^(2)+2^(2)+3^(2)+….+r^(2))/(1^...

If `t_(r)=(1^(2)+2^(2)+3^(2)+….+r^(2))/(1^(3)+2^(3)+3^(3)+…+r^(3)), S_(n)=sum_(r=1)^(n)(-1)^(r)t_(r)`, then `lim_(nrarroo)((1)/(3-S_(n)))=`

Text Solution

Verified by Experts

The correct Answer is:
3/11

`S_(n)=(2)/(3) sum_(r=1)^(n)(-1)^(r)((1)/(r)+(1)/(r+1))`
`S_(n=(2)/(3)sum_(r=1)^(oo)((1)/(r)+(1)/(r+1))`
`S_(n)=(2)/(3)sum_(r=1)^(oo)`(((-1)^(r))/(r)-((-1)^(r+1))/(r+1))" "rArr" "(2)/(3)((-1)/(1)-0)=-2//3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If t=(1^(2)+2^(2)+3^(2)+...r^(2))/(1^(3)+2^(3)+3^(3)+....+r^(3)), S_(n) = overset(n) underset(r=1) sum(-1)^(r)t_(r) then lim_(n to oo) ((1)/(3)-S_(n))=

sum_(r=1)^(n)(1)/((r+1)(r+2))*^(n+3)C_(r)=

S_(n)=sum_(r=1)^(n)(r)/(1.3.5.7......(2r+1)) then

Find sum_(r=1)^(n)(1^(2)+2^(2)+3^(3)+...+r^(2))/(r+1)

If S_(1)= sum_(r=1)^(n) r , S_(2) = sum_(r=1)^(n) r^(2),S_(3) = sum_(r=1)^(n)r^(3) then : lim_(n to oo ) (S_(1)(1+(S_(8))/8))/((S_(2))^(2)) =

Evaluate: sum_(r=1)^n(3^r-2^r)

Prove that (3!)/(2(n+3))=sum_(r=0)^(n)(-1)^(r)((^nC_(r))/(r+3C_(r)))

sum_(r=1)^(n)r^(3)=f(n) then sum_(r=1)^(n)(2r-1)^(3) is equal to

If sum_(r=1)^(n)T_(r)=(3^(n)-1), then find the sum of sum_(r=1)^(n)(1)/(T_(r))