Home
Class 12
MATHS
int(a^4)^(b^4)(f(sqrtx))/((sqrtx)[f(a^2+...

`int_(a^4)^(b^4)(f(sqrtx))/((sqrtx)[f(a^2+b^2-sqrtx)+f(sqrtx)])dx` is equal to

A

`a^2-b^2`

B

`b^2-a^2`

C

0

D

`a^2+b^2`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `sqrt(x)=t` also `(1)/(2sqrt(x))dx=dt implies x=t^(2)`
When `x=a^(4) implies t=a^(2)`
`x=b^(4) implies t=b^(2)`
`implies I=2int_(a^(2))^(b^(2))(f(t))/((f(a^(2)+b^(2)-t)+f(t)))dt` . . (1)
`implies I=2int_(a^(2))^(b^(2)) (f(a^(2)+b^(2)-t))/(f(t)+f(a^(2)+b^(2)-t)) dt ` . . . (2)
Adding 2I=2`int_(a^(2))^(b^(2))dt" "I=(b^(2)-a^(2))`.
Promotional Banner

Similar Questions

Explore conceptually related problems

int(logsqrtx)/(3sqrtx)dx is equal to

f(x)=sqrtx-(1)/(sqrtx)

int (cossqrtx)/(sqrtx)dx

int(sec sqrtx)/(sqrtx)dx=

int _(4) ^(9) (dx)/(sqrtx) =

inte^(sqrtx)dx

(d)/(dx)(sqrtx+(1)/(sqrtx))^2=

int(sqrtx+1/sqrtx)^2 dx=