Home
Class 12
MATHS
Solve sinx*(dy)/(dx)=y*lny if y=e, when ...

Solve `sinx*(dy)/(dx)=y*lny` if y=e, when `x=pi/2`

A

`y=e^(tan(x//2))`

B

`y=e^(-tan(x//4)`

C

`y=e^(cotx)`

D

`y=e^(tanx)`

Text Solution

Verified by Experts

The correct Answer is:
A

`because (dy)/(ylny)=(dx)/(sinx)implies ln|lny|=tanx//2|+lnc`
Put `x=(pi)/(2) implies y=2" "therefore y=e^(tan(x//2))`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin x*(dy)/(dx)=y*ln y if y=e, when x=(pi)/(2)

Solve: (dy)/(dx)+y=e^x

Solve: (secx)(dy)/(dx)=y+sinx

Solve e^(-x+y)(dy)/(dx)=1

Solve each of the following initial value problem: (dy)/(dx)=2y tan x=sin x;y=0 when x=(pi)/(3)

Solve: (dy)/(dx)+2y=e^(-x)

dy/dx+2ytanx=sinx at y=0, when x=pi/3

Solve: (dy)/(dx)+y=cosx-sinx

Solve: (dy)/(dx)+3y=e^(-2x)

Solve: y-x(dy)/(dx)=x+y(dy)/(dx)