Home
Class 12
MATHS
lim(x->e) (lnx-1)/(x-e)...

`lim_(x->e) (lnx-1)/(x-e)`

A

e

B

`1/e`

C

`e^2`

D

`1/(e^2)`

Text Solution

Verified by Experts

The correct Answer is:
B

`(ln((x)/(e)))/(e((x)/(e)-1))`, let `(x)/(e)-1=t" "implies lim_(t to 0)(ln(1+t))/(et)=(1)/(e)`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)(e^(2x)-1)/(3x)

Lim_(x rarre)(log x-1)/(x-e)=

lim_(x rarr e)(log x-1)/(x-e)=(1)/(e)

Evaluate: (lim)_(x rarr e)(log x-1)/(x-e)

the value of lim_(x rarr e)(log x-1)/(x-e) equals to

Evaluate: ("Lim")_(x->1)(x^x-x)/(x-1-lnx)

lim_(xrarre) (log_(e)x-1)/(|x-e|) is

Using the L .Hospital rule find limits of the following functions : lim_(xto1) (a^(lnx)-x)/(lnx)

lim_(x->0)(e^(x)-1)/(sqrt(4+x)-2) =

The value of lim_(x to 0) ((e^(x)-1)/(x)) is