Home
Class 12
MATHS
The value of underset(xto2)lim(2^(x)+2^(...

The value of `underset(xto2)lim(2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "`

A

` 4 sqrt 2 `

B

` 8`

C

` 6`

D

`4 sqrt 3 `

Text Solution

Verified by Experts

The correct Answer is:
B

`{:(Lim),(x to 2):} (2^(x) + 2^(3-x)-6)/(sqrt(2^(-x)) - 2^(1-x))`
`= {:(lim),(x to 2):} (2^(x) .In x- 2^(3-x) In2)/((2(-x)/(2) In.2)/(2) + 2^(1-x).In 2),` using L,H rule
` = {:(Lim),(x to2):} (2^(x) - 2^(3-x))/(2^(1-x) - 2^((-x)/(2) -1)) = (4-2)/((1)/(2) - (1)/(4)) =8`
Promotional Banner

Similar Questions

Explore conceptually related problems

The limit underset(x to 2)lim (2^(x)+2^(3-x)-6)/(sqrt2^(-x)-2^(1-x)) is equal to

The value of lim_(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

lim_(x rarr2)(2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))

the value of lim_(x rarr2)(2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x)) is

The value of Lim_(x rarr0)(2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x)) is

The value of underset(x to 0)lim (sqrt(1+x^(2))-sqrt(1-x^(2)))/(x^(2)) is

If value of underset(x to a)lim (sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrtx)" is equal to "(2sqrt3)/(m) , where m is equal to

The value of underset(x to 2)lim (sqrt(1+sqrt(2+x))-sqrt3)/(x-2) is

The value of underset(x to 2)lim (sqrt(1+sqrt(2+x))-sqrt3)/(x-2) is