Home
Class 12
MATHS
If vector vec a = hati + hatj + ...

If vector ` vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk ` and ` vec c = hati + alpha hatj + beta hatk ` are linearly dependent and ` | vec c | = sqrt3 ` , then value of ` | alpha | + | beta | ` is

A

2

B

3

C

1

D

4

Text Solution

Verified by Experts

The correct Answer is:
A

`vec(a) , vec(b) , vec(c)` are linerly depend `rArr` Coplanar vectors
`|{:(,1,1,1),(,4,3,4),(,1,alpha,beta):}|=0`
`rArr 1 + 0 - beta =0 rArr beta = 1`
`because |vec C| = sqrt(3) rArr 1 + alpha^(2) + beta alpha = pm 1 rArr |alpha | +| beta| = 2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca =hati + hatj - hatk, vecb = 2hati + 3hatj + hatk and vec c = hati + alpha hatj are coplanar vector , then the value of alpha is :

If veca = 5 hati- 4 hatj + hatk, vecb =- 4 hati + 3 hatj - 2 hatkand vec c = hati - 2 hatj - 2 hatk, then evaluate vec c. (veca xx vecb)

If veca = 3hati - hatj - 4hatk , vecb = -2hati + 4hatj - 3hatk and vec c = hati + 2hatj - hatk then |3veca - 2vec b + 4vec c | is equal to

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2 hati - hatj - hatk and vec(c) = hati +3 hatj - 2hatk find (vec(a) xx vec(b)) xx vec(c)

If veca = hati - hatj + hatk, vecb= 2 hati + hatj -hatk and vec c = lamda hati -hatj+ lamda hatk are coplanar, find the value of lamda.

If vec r = 3 hati + 2 hatj - 5 hatk , vec a= 2 hati - hatj + hatk, vec b = hati + 3 hatj - 2hatk and vec c=2 hati + hatj - 3 hatk " such that " hat r = x vec a +y vec b + z vec c then