Home
Class 12
MATHS
Let f (x ) = | 3 - | 2- | x- 1 |||...

Let ` f (x ) = | 3 - | 2- | x- 1 |||, AA x in R ` be not differentiable at ` x _ 1 , x _ 2 , x _ 3, ….x_ n ` , then `sum _ (i= 1 ) ^( n ) x _ i^2 ` equal to :

Text Solution

Verified by Experts

The correct Answer is:
63

`f(x) = | 3-| 2-| x-1||`
Not differentiable at corner point
` x - 1 = 0 rArr x = 1 " " …..(i)`
`| - 1 | = 2 rArr x - 1 = pm 2`
`rArr x = 3 , - 1" "…..(ii)`
` |2- |x-1||+3 rArr 2 - | x-1| = pm 3`
`rArr |x-1| = 2 bar(pm) , =3 rArr 2 - | x - 1 | = pm 3`
`rArr x - 1 = pm 5 rArr x = 6 , - 4 " "......(iiii)`
From (i) , (ii) &(iii)
` Sum Xi^(2) = 1^(2) + 3^(2) + (-1)^(2) + 6^(2) + (-4)^(2)`
` = 1 + 9 + 1+ 36 + 16`
`sum Xi^(2) = 63`
Promotional Banner

Similar Questions

Explore conceptually related problems

If barx is the mean of x_1, x_2, x_3, ... .. , x_n , then sum_(i=1)^(n)(x_i-barx)=

If x_(1),x_(2),x_(3),......x2_(n) are in A.P, then sum_(r=1)^(2n)(-1)^(r+1)x_(r)^(2) is equal to

Let x _(1) , x _(2), x _(3) be the points where f (x) = | 1-|x-4||, x in R is not differentiable then f (x_(1))+ f(x _(2)) + f (x _(3))=

Let f(x)=|x-1|+|x-2|+|x-3|+|x-4|AA x in R Then

Let f(x) = 3x + 5 AA x in R, g^(-1)(x) = x^(3) +1 AA x in R , then (f^(-1).g)^(-1)(x) is equal to

Let f: N to N be defined by f(x) = x-(1)^(x) AA x in N , Then f is