Home
Class 12
MATHS
If |x| <1 then 1 + n((2x)/(1+x)) + (n(...

If `|x| <1` then ` 1 + n((2x)/(1+x)) + (n(n+1))/(2!)((2x)/(1+x))^2 +.....oo`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |(a+x, a-x, a-x),(a-x,a+x,a-x),(a-x,a-x,a+x)|=0 then

If |(a +x,a -x,a -x),(a -x,a +x,a -x),(a -x,a -x,a +x)| = 0 , then x is equal to

If f(x) = |(x + lamda,x,x),(x,x + lamda,x),(x,x,x + lamda)|, " then " f(3x) - f(x) =

If f(x) = |(x + lamda,x,x),(x,x + lamda,x),(x,x,x + lamda)|, " then " f(3x) - f(x) =

(1) If | [a+x ,a ,x ],[a-x, a ,x], [a-x, a ,-x] |=0 then x is

If f(x) is continuous at x=a,a>0, where f(x)=[(a^x-x^a)/(x^x-a^a), for x!=a, -1 for x=a, then a=

If f(x) = |[x+p,x+a,x+a],[x+b,x+q,x+a],[x+b,x+b,x+r]| and g(x)=(p-x)(q-x)(r-x) , then the value of f(0) is

If f(x) = |(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(x-1),x(x-1)(x-2),x(x+1)(x-1))| , using properties of determinant, find f(2x) - f(x).

If |(1+x,1-x,1-x),(1-x,1+x,1-x),(1-x,1-x,1+x)|=0 then x=

If x is a negative integer, then (a) x+|x|=0 (b) x-|x|=0 x+|x|=-2x (d) x=-|x|