Home
Class 12
MATHS
Show that the product [1+(1+i)/2][1+((1+...

Show that the product `[1+(1+i)/2][1+((1+i)/2)^2][1+((1+i)/2)^(2^2)]...[1+((1+i)/2)^(2^n)]` is equal to `(1-1/2^(2^n))(1+i)`

Promotional Banner

Similar Questions

Explore conceptually related problems

((1+i)/(1-i))^(2) + ((1-i)/(1+i))^(2) is equal to :

((1+i)/(1-i))^(2) + ((1-i)/(1+i))^(2) is equal to :

The number ((1+i)^(n))/((1-i)^(n-2)) is equal to

(1+2i)/(1-(1-i)^2)

If n in Z , then (2^(n))/(1+i)^(2n)+(1+i)^(2n)/(2^(n)) is equal to

Prove that the matrix A=[[(1+i)/(2),(-1+i)/(2)(1+i)/(2),(1-i)/(2)]] is

Prove that the matrix A= [[(1+i)/2,(-1+i)/2],[(1+i)/2,(1-i)/2]] is unitary.

Show that , ((1+i)/(1-i))^2+((1-i)/(1+i))^2 is a real number.