Home
Class 12
MATHS
tan^(-1)((3a^(2)x-x^(3))/(a(a^(2)-3x^(2)...

tan^(-1)((3a^(2)x-x^(3))/(a(a^(2)-3x^(2))))

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))=k tan^(-1)(x/a) then k=

Prove that tan^(-1)""(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)""x/a .

y=tan^(-1)((3a^2x-x^3)/(a(a^2-3x^2)))

tan^(-1)((3x-x^(3))/(1-3x^(2)))

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

Prove that tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2)))absxlt(1)/(sqrt(3)).

Tan^(-1)((3x-x^(3))/(1-3x^(2)))=

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))=tan^(-1)((3x-x^(3))/(1-3x^(2)))

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))