Home
Class 12
MATHS
If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h ...

If `cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n` `x^2+y^2+z^2+2x y z=1` `2(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(-1)x+cos^(-1)y+cos^(-1)z` `x y+y z+z x=x+y+z-1` `(x+1/x)+(y+1/y)+(z+1/z)geq6`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If cos^(-1)x+cos^(-1)y+cos^(-1)=pi,p rov et h a tx^2+y^2+z^2+2x y z=1.

If cos^(-1)x +cos^(-1)y +cos^(-1)z =3pi then x+y+z is :

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n prove t h a t x^2+y^2+z^2+2x y z=1

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, then x^(2)+y^(2)+z^(2)+2xyz=12(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(-1)x+cos^(-1)y+cos^(-1)zxy+yz+zx=x+y+z-1(x+(1)/(x))+(y+(1)/(y))+(z+(1)/(z))>=6

cos^(-1)x+cos^(-1)y+cos^(-1)z=pi ,then prove that, x^2+y^2+z^2+xyz=1

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^(2)+y^(2)+z^(2)+2xyz=1

If Cos^(-1)x+Cos^(-1)y+Cos^(-1)z=pi,"then "x^(2)+y^(2)+z^(2)+2xyz=

If cos ^(-1) x+cos ^(-1) y+cos ^(-1) z=3 pi then x y+y z+z x=