Home
Class 11
MATHS
Find the value of (sin(180^0+theta)cos(...

Find the value of `(sin(180^0+theta)cos(90^0+theta)t a n(270^0-theta))/(sin(180^0-theta)"sin"(270^0+theta))`

A

0

B

1

C

-1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \[ \frac{\sin(180^\circ + \theta) \cos(90^\circ + \theta) \tan(270^\circ - \theta)}{\sin(180^\circ - \theta) \sin(270^\circ + \theta)} \] we will use trigonometric identities and properties of angles. ### Step 1: Simplify the numerator 1. **Calculate \(\sin(180^\circ + \theta)\)**: \[ \sin(180^\circ + \theta) = -\sin(\theta) \] 2. **Calculate \(\cos(90^\circ + \theta)\)**: \[ \cos(90^\circ + \theta) = -\sin(\theta) \] 3. **Calculate \(\tan(270^\circ - \theta)\)**: \[ \tan(270^\circ - \theta) = -\cot(\theta) \] Now, substituting these values into the numerator: \[ \text{Numerator} = (-\sin(\theta)) \cdot (-\sin(\theta)) \cdot (-\cot(\theta)) = -\sin^2(\theta) \cot(\theta) \] ### Step 2: Simplify the denominator 1. **Calculate \(\sin(180^\circ - \theta)\)**: \[ \sin(180^\circ - \theta) = \sin(\theta) \] 2. **Calculate \(\sin(270^\circ + \theta)\)**: \[ \sin(270^\circ + \theta) = -\cos(\theta) \] Now, substituting these values into the denominator: \[ \text{Denominator} = \sin(\theta) \cdot (-\cos(\theta)) = -\sin(\theta) \cos(\theta) \] ### Step 3: Combine the results Now we can substitute the simplified numerator and denominator back into the original expression: \[ \frac{-\sin^2(\theta) \cot(\theta)}{-\sin(\theta) \cos(\theta)} = \frac{\sin^2(\theta) \cot(\theta)}{\sin(\theta) \cos(\theta)} \] ### Step 4: Further simplification Since \(\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}\), we can write: \[ \frac{\sin^2(\theta) \cdot \frac{\cos(\theta)}{\sin(\theta)}}{\sin(\theta) \cos(\theta)} = \frac{\sin(\theta) \cos(\theta)}{\sin(\theta) \cos(\theta)} = 1 \] ### Conclusion Thus, the value of the original expression is: \[ 1 \]

To find the value of \[ \frac{\sin(180^\circ + \theta) \cos(90^\circ + \theta) \tan(270^\circ - \theta)}{\sin(180^\circ - \theta) \sin(270^\circ + \theta)} \] we will use trigonometric identities and properties of angles. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    RD SHARMA|Exercise Solved Examples And Exercises|120 Videos
  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

Find the value of (sin theta)/(cos (90^@+theta))+(sin theta)/(sin (180^@+theta))+(tan(90^@+theta))/(cot theta)

What is the value of sin (180-theta)sin (90- theta)+[cot(90- theta)// 1+tan^2 theta] ? sin (180-theta)sin (90- theta)+[cot(90- theta)// 1+tan^2 theta] का मान क्या है?

Knowledge Check

  • The value of (sin(180^(@)+theta)cos(90^(@)+theta)tan(270^(@)-theta)cot(360^(@)-theta))/(sin(360^(@)-theta)cos(360^(@)+theta)cosec(-theta)sin(270^(@)+theta))

    A
    1
    B
    2
    C
    3
    D
    4
  • What is the value of : (sin(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)cot(360^(@)-theta)"cosec "(90^(@)+theta)) :

    A
    `sin theta`
    B
    `cos theta`
    C
    1
    D
    `(1)/(sqrt2)`
  • What is the value of , (sin(90^@-theta)sec(180^@-theta)sin(-theta))/(sin(180^@+theta)cot(360^@-theta)cosec(90^@+theta)) :

    A
    `sintheta`
    B
    `costheta`
    C
    1
    D
    `1/sqrt2`
  • Similar Questions

    Explore conceptually related problems

    Simplify (sin(180^(@)+theta)cos(360^(@)-theta)tan(270^(@)-theta))/(sec^(2)(90^(@)+theta)tan(-theta)sin(270^(@)+theta))

    The value of cos(270^(@)+theta)cos(90^(@)+theta)-sin(270^(@)-theta)cos theta is

    What is the value of (tan (90^@-theta) sec (180^@-theta)sin(-theta))/(sin (180^@+theta) cot (360^@-theta) "cosec"(90^@-theta)) ?

    sin(90+theta)+cos(90-theta)+tan(180-theta)+cot(180+theta)

    Value of sintheta+cos(90^(@)+theta)+sin(180^(@)-theta)+sin(180^(@)+theta) is