Home
Class 11
MATHS
If f(1) = g(1) = 2 and f' (1) and g' (1...

If `f(1) = g(1) = 2 and f' (1) and g' (1)` exists then `lim_(x->1)=(f(1)g(x)-f(1)-g(1)f(x)+g(1))/((g(x)-f(x))` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to

Let f(x), g(x) be differentiable functions and f(1) = g(1) = 2, then : lim_(x rarr 1) (f(1) g(x) - f(x) g(1) - f(1) + g(1))/(g(x) - f(x)) equals :

If f (a) = 2 , f'(a) = 1, g (a) = -1 and g'(a) = 2 , show that lim_(x to a)(g(x)f(a)-f(x)g(a))/(x-a) = 5

If f(a) = 2, f'(a) = 1, g(a) = -1 and g'(a) = 2 , find the value of lim_(x rarr a)(g(x)f(a) - g(a)f(x))/(x-a)

If f(a)=2 f'(a)=1 g(a)=-1 g'(a)=2 then lim_(xtoa)(g(x)f(a)-g(a)f(x))/(x-a) is

If f(a)=2 f'(a)=1 g(a)=-1 g'(a)=2 then lim_(xtoa)(g(x)f(a)-g(a)f(x))/(x-a) is

If f(a) = 2 , f ' (a) = 1 , g (a) = -1 , g'(a) = 2 , then lim_(x to a) (g (x) * f (a) - g (a) * f(x))/( x- a) is equal to

If f(a)=-1,f'(a)=4,g(a)=1,g'(a)=-1 then lim_(xtoa)(g(x)f(a)-g(a)f(x))/(x-a)