Home
Class 12
MATHS
Plane passing through the intersection o...

Plane passing through the intersection of the planes x + 2y + z - 1 = 0 and 2x + y + 3z - 2 = 0 and perpendicular to the plane x + y + z - 1 = 0 and x + ky + 3z - 1 = 0. Then the value of k is

Promotional Banner

Similar Questions

Explore conceptually related problems

Plane passing through the intersection of the planes x + 2y + 2-1 = 0 and 2x + y + 3z - 2 = 0 and perpendicular to the plane x + y + z-1= 0 and x + ky + 3z - 1 = 0. Then the value of k is

Eqation of plane passing through line of intersection of planes x+y+z=1 and 2x+3y+z=5 and perpendicular to the plane x-y-z=0 is :

The plane x + 3y + 13 = 0 passes through the line of intersection of the planes 2x - 8y + 4z = p and 3x - 5y + 4z + 10 =0 . If the plane is perpendicular to the plane 3x - y - 2z - 4 = 0 , then the value of p is equal to

The plane x + 3y + 13 = 0 passes through the line of intersection of the planes 2x - 8y + 4z = p and 3x - 5y + 4z + 10 = 0 If the plane is perpendicular to the plane , 3x - y - 2z - 4 = 0 then the value of p is equal to

Find the equation of the plane passing through the intersection of the planes 2x+3y-z+1=0 and x+y-2z+3=0 and perpendicular to the plane 3x-y-2z-4=0

Find the equation of the plane passing through the intersection of the planes 2x-3y+z-4=0 and x-y+z+1=0 and perpendicular to the plane x+2y-3z+6=0

Find the equation of the plane passing through the line intersection of the plane: 2x-y=0 and 3z-y=0 and perpendicular to the plane 4x+5y-3z=8