Home
Class 11
MATHS
If the sum of the series sum(k)^(i) (sec...

If the sum of the series `sum_(k)^(i)` `(sec^(-1)sqrt(|x|)` - `cosec^(-1)sqrt(|x|)/(pi a))` is finite where |x|>=1 and a>0 then range of values of a is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

Find the sum of the series sum_(k=1)^(360)((1)/(k sqrt(k+1)+(k+1)sqrt(k)))

The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is