Home
Class 12
MATHS
If the sum of the series sum(n=1)^(n)((s...

If the sum of the series `sum_(n=1)^(n)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^(n)` is finite where `|x|>=1` and `a>0` then range of values of a is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(k)^(i) (sec^(-1)sqrt(|x|) - cosec^(-1)sqrt(|x|)/(pi a)) is finite where |x|>=1 and a>0 then range of values of a is

The sum of the series sum _(n=1) ^(oo) sin ((n!pi)/(720)) is