Home
Class 12
MATHS
If alpha and beta are the solutions of a...

If `alpha and beta` are the solutions of `acostheta + bsintheta = c`, show that `sinalpha+sinbeta=(2bc)/(a^2+b^2)` and `sinalpha sinbeta=(c^2-a^2)/(a^2+b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the solutions of a cos theta+b sin theta=c, show that sin alpha+sin beta=(2bc)/(a^(2)+b^(2)) and sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))

If alpha and beta are the solutions of a cos theta+b sin theta=c, then show that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))( ii) cos(alpha-beta)=(2c^(2)-(a^(2)+b^(2)))/(a^(2)+b^(2))

If alpha and beta are the solution of the equation a sec theta+b tan theta=c then show that tan(alpha+beta)=(2bc)/(b^(2)-c^(2))

If alpha and beta are the solutions of the equation a tan theta+b sec theta=c, then show that tan(alpha+beta)=(2ac)/(a^(2)-c^(2))

If alpha and beta are the solution of the equation,a tan theta+b sec theta=c then show that tan(alpha+beta)=(2ac)/(a^(2)-c^(2))

If alpha and beta are the solutions roots of a cos theta+b sin theta=c, then choose the correct option (A)sin alpha+sin beta=(2bc)/(a^(2)+b^(2))(B)sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))(C)sin alpha+sin beta=(a^(2)-b^(2))/(c^(2)+b^(2))(D)sin alpha sin beta=(a^(2)-b^(2))/(c^(2)+b^(2))(D)

If s in alpha+s in beta=a and cos alpha+cos beta=b show that: sin(alpha+beta)=(2ab)/(a^(2)+b^(2))cos(alpha+beta)=(b^(2)-a^(2))/(b^(2)+a^(2))

If alpha, beta be the solutions of theta for the equation a tan theta + b sec theta = c then prove that tan(alpha+ beta) = 2ac/(a^(2)-c^(2)) .

If alpha + beta+gamma=pi , prove that sin^2 alpha + sin^ beta - sin^2 gamma = 2sinalpha sinbeta cosgamma

sinalpha=(1)/(2) cos beta=(1)/(2) then alpha+beta=