Home
Class 12
MATHS
If f'(x)=3x^(2)sin x-x cos x x!=0 f(0)=0...

If f'(x)=3x^(2)sin x-x cos x x!=0 f(0)=0 then the value of f((1)/(pi)) is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=3x^(2)sin(1/x)-x cos(1/x) ,x!=0 ,f(0)=0 then the value of f((1)/(pi)) is

If F(x)=int(x+sin x)/(1+cos x)dx and F(0)=0 then the value of f((pi)/(2)) is

If F(x)=int((1+sin x)/(1+cos x))dx and F(0)=0 then the value of F(pi/2) is

Let f'(x)=3x^(2)sin((1)/(x))-x cos((1)/(x)), if x!=0,f(0)=0 and f((1)/(pi))=0 then

If f(x)=(1-sin2x+cos2x)/(2cos2x), then the value of f(16^(0))*f(29^(0)) is (1)/(2)(1)/(4)1(3)/(4)

f(x)=(sin x-x cos x)/(x^(2)) if x!=0 and f(0)=0 then int_(0)^(1)f(x)dx is

If f(x) = ((a+x)^(2)sin(a+x)-a^(2)sin a)/(x) , x !=0 , then the value of f(0) so that f is continuous at x = 0 is

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

A function y=f(x) satisfies f''(x)=-(1)/(x^(2))-pi^(2)sin(pi x)f'(2)=pi+(1)/(2) and f(1)=0 then value of f((1)/(2)) is

If f(x)=[(3sin x)/(x)],x!=0, then the value of f(0) so that the function f(x) is continuous at x=0 is