Home
Class 11
MATHS
Let y=y(x) y(1)=1 and y(e)=e^(2). Consid...

Let `y=y(x) y(1)=1` and `y(e)=e^(2)`. Consider `J=int(x+y)/(xy)dy I=int(x+y)/(x^(2))dx, J-I=g(x) `and `g(1)=1` then the value of `g(e)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If y satisfies (dy)/(dx)=(e^(y))/(x^(2))-(1)/(x) and y(1)=0 then the value of e^(y(2)) is

If 2x^2dy + (e^y-2x)dx=0 and y(e)=1 then find the value of y(1)

Let y=f(x) satisfies (dy)/(dx)=(x+y)/(x) and f(e)=e then the value of f(1) is

If xsin((y)/(x))dy = (y sin((y)/(x))-x)dx and y(1) = (pi)/(2) then the value of cos((y)/(e^(7))) is __________.

If (dy)/dx = (xy)/(x^2 + y^2), y(1) = 1 and y(x) = e then x =

If y=e^((5)/(x))(2x^(2)-1)^((1)/(2)) then the value of ((dy)/(dx))/(y) is

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

If (dy)/(dx)=e^(x+y) and it is given y=1 for x=1 then find the value of y for x=-1