Home
Class 12
PHYSICS
One mole of an ideal gas with heat capac...

One mole of an ideal gas with heat capacity at constant pressure C_(P) undergoes the process T=T_(0)+alpha V where T_(0) and a are constants.If its volume increases from V_(1)toV_(2) the amount of heat transferred to the gas is C_(P)RT_(0)ln((V_(2))/(V_(1))) alpha C_(P)((V_(2)-V_(1)))/(RT_(0))ln((V_(2))/(V_(1))) alpha C_(P)(V_(2)-V_(1))+RT_(0)ln((V_(2))/(V_(1)))

Promotional Banner

Similar Questions

Explore conceptually related problems

One mole of an ideal gas with heat capacity at constant pressure C_(P) undergoes the process T=T_(0)+alpha V where T_(0) and a are constants.If its volume increases from V_(1)toV_(2) the amount of heat transferred to the gas is C_(P)RT_(0)ln((V_(2))/(V_(1))) O alpha C_(P)((V_(2)-V_(1)))/(RT_(0))ln((V_(2))/(V_(1))) qquad alpha C_(P)(V_(2)-V_(1))+RT_(0)ln((V_(2))/(V_(1)))

One mole of an ideal gas with heat capacity at constant pressure C_p undergoes the process T = T_0 + alpha V , where T_0 and alpha are constants. Find : (a) heat capacity of the gas as a function of its volume , (b) the amount of heat transferred to the gas, if its volume increased from V_1 to V_2 .

find the minimum attainable pressure of an ideal gs in the process T = t_0 + prop V^2 , where T_(0)n and alpha are positive constants and (V) is the volume of one mole of gas.

An ideal gas with heat capacity at constant volume C_(V) undergoes a quasistatic process described by P V^(alpha) in a P-V diagram, where alpha is a constant. The heat capacity of the gas during this process is given by-

One mole of an ideal monoatomic gas undergoes the process T=T_(0)+4V , where T_(0) is initial temperature. Find (i) Heat capacity of gas as function of its volume. (ii) The amount of heat transferred to gas if its volume increases from V_(0) to 4V_(0) .

One mole of an ideal gas undergoes a process p=(p_(0))/(1+((V)/(V_(0)))^(2)) where p_(0) and V_(0) are constants. Find temperature of the gaas when V=V_(0) .

One mole of an ideal gas undergoes a process p=(p_(0))/(1+((V_(0))/(V))^(2)) . Here, p_(0) and V_(0) are constants. Change in temperature of the gas when volume is changed from V=V_(0) to V=2V_(0) is

Find the minimum attainable pressure of ideal gas in the process T = T_0 + alpha V^2 , where T_0 and alpha positive constants, and V is the volume of one mole of gas. Draw the approximate p vs V plot of this process.

Find the minimum attainable pressure of an ideal gas in the process T = T_(0) + alpha V^(2) , Where T_(0) and alpha are positive constant and V is the volume of one mole of gas. Draw the approximate T -V plot of this process.

One mole of a diatomic gas undergoes a process P = P_(0)//[1 + (V//V_(0)^(3))] where P_(0) and V_(0) are constant. The translational kinetic energy of the gas when V = V_(0) is given by