Home
Class 12
MATHS
Prove that tan^-1(1/2)+tan^(-1)(1/3)=pi/...

Prove that `tan^-1(1/2)+tan^(-1)(1/3)=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that tan^(-1)(3/5)+tan^(-1)(1/4)=(pi)/(4)

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

Prove that : tan^(-1)((1)/(2))+tan^(-1)((1)/(5))+tan^(-1)((1)/(8))=(pi)/(4)

Prove that: tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1)(2)/(9)tan^(-1)+tan^(-1)(1)/(5)+tan^(-1)(1)/(8)=(pi)/(4)tan^(-1)(3)/(4)+tan^(-1)(3)/(5)-tan^(-1)(8)/(19)=(pi)/(4)tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)(1)/(13)

Prove that tan^(-1) 2 + tan^(-1) 3 = (3pi)/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that: tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=(pi)/(4)