Home
Class 12
MATHS
If x in[(sqrt(3))/(2), 1] then [sin^(-1)...

If `x in[(sqrt(3))/(2), 1]` then `[sin^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sin^(-1)x)/(sqrt(1-x^(2))

sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]=

inte^(sin^(-1)x)((x+sqrt(1-x^2))/(sqrt(1-x^2)))dx=

If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))

sqrt(1+sin x)+sqrt((1-x^(2))/(1+x^(2)))

lim_(x rarr0)(x(1-sqrt(1-x^(2))))/(sqrt(1-x^(2))(sin^(-1)x^(3)))

lim_(x rarr0)(x(1-sqrt(1-x^(2))))/(sqrt(1-x^(2))(sin^(-1)x)^(3))

sin^(-1)x+sin^(-1)sqrt(1-x^(2))